© 2020 SAP SE or an SAP affiliate company. All rights reserved.

SAP - ABAP for SAP HANA Development User Guide | CUSTOMER
%NW-ASABAP-LONG-7.55% FPSOO0 and SAP Cloud Platform ABAP Environment
Document Version: 3.16 — 2021-02-03

SAP - ABAP for SAP HANA Development User
Guide

Client Version 3.16

THE BEST RUN w

Content

3.2

41
4.2
4.3

About the ABAP for SAP HANA Development User Guide. ii i i i iannnn 3
L0 0] 1 T = o = 4
Database Procedures 4
ABAP Managed Database Procedures (AMDP). 4
AMDP Profiling. . . o o 6
Understanding AMDP Profiling Results. 8
L T 13
Fundamental Tasks and ToOIS. 13
Previewing Results of ABAP Managed Database Procedures (AMDP). 14
Using Troubleshooting Tools. 15
Working with the AMDP Debugger. 16
Working with the AMDP Profiler. 33
What's New in ABAP for SAP HANA Development. it inennnnnn 36
OVErsioN 3.6. . . . 36
VErSiON B4, .« o 37
WVErsion 3.0, 38

SAP - ABAP for SAP HANA Development User Guide
CUSTOMER Content

1 About the ABAP for SAP HANA
Development User Guide

Scope of Documentation

O This documentation describes the functionality and the usage of tools for integration of native SAP HANA

objects (in the context of SAP HANA repository content) within the ABAP layer.

Context

This guide provides documentation about features which are client-specific or require a specific back-end
version.

Consequently, this documentation covers all client-specific and back-end-specific dependencies.
To highlight and contrast back-end-specifics in the relevant context, the following icons are used:

e O for SAP Cloud Platform ABAP Environment shipments

Target Audience

ABAP developers who develop content for ABAP-based applications that are optimized for SAP HANA

databases.

Validity of Documentation

This documentation belongs to ABAP Development Tools client version 3.14 and refers to the range of
functions that have been shipped as part of the standard delivery for:

o O SAP Cloud Platform ABAP Environment

SAP - ABAP for SAP HANA Development User Guide
About the ABAP for SAP HANA Development User Guide CUSTOMER

2 Concepts

2.1 Database Procedures

The SAP HANA database comes with a variety of programming options for application logic at the database
level.

The database procedures (which are used to implement the application logic) can be written as queries that
follow the SAP HANA database SQLScript syntax. Database procedures can have multiple input parameters
and output parameters; these are either of scalar (such as integer, double, varchar)or table type.

Using ADT tools, you can implement SAP HANA database procedures by means of...

e ABAP Managed Database Procedures (AMDP) [page 4]
The basic idea of AMDP is to manage SAP HANA procedures and their lifecycle inside the ABAP server. To
allow native consumption of SAP HANA features from within the ABAP layer, the SAP HANA database
procedure language SQLScript has been integrated into the ABAP stack. AMDP is implemented in ABAP
class methods (so-called AMDP methods) that serve as a container for SQLScript code. This approach
offers many significant advantages:
o It enables the shipment of AMDP in the same way as any other ABAP development object (lifecycle
management)
o It allows you to implement and ship corrections for AMDPs, just like it is possible for ABAP classes,
including SAP Note support (supportability and extensibility).

2.11 ABAP Managed Database Procedures (AMDP)

ABAP Managed Database Procedures is one of the recommended patterns for use in ABAP code optimization
within the context of ABAP development on SAP HANA.

Basics

AMDPs allow you as an ABAP developer to write database procedures directly in ABAP. Special ABAP classes
(so-called AMDP classes) can contain embedded code (SQLScript) that is used to generate DB procedures in
the SAP HANA DB layer.

The basic idea of AMDP is to manage SAP HANA procedures and their lifecycle inside the AS ABAP server. To
allow native consumption of SAP HANA features from within the ABAP layer, the SAP HANA database
procedure language SQLScript has been integrated into the ABAP stack. AMDP is implemented in ABAP class
methods (so-called AMDP methods) that serve as a container for SQLScript code.

This approach offers many significant advantages:

SAP - ABAP for SAP HANA Development User Guide
4 CUSTOMER Concepts

e |t enables the shipment of AMDP in the same way as any other ABAP development object (lifecycle
management)

Editor

ABAP Managed Database Procedures (AMDP) are the preferred way for developing SAP HANA DB procedures
on the ABAP platform.

Since ABAP Managed Database Procedures are implemented as methods of a global ABAP class, the editing
environment for AMDP is the ABAP class editor. In concrete terms, an ABAP Managed Database Procedure is
written in a database-specific language, such as Native SQL or SQL Script, and is implemented within an AMDP
method body of an AMDP class. So, developing a database procedure is similar to the editing of ABAP class
methods with the same tool environment.

Syntax of AMDP Classes

An AMDP is implemented in an AMDP class with a regular static method or instance method in any visibility
section.

CLASS <my amdp class> DEFINITION.
PUBLIC SECTION.

* Marker interface with SAP HANA DB as database type
INTERFACES IF AMDP MARKER <DB TYPE>.

METHODS <my amdp method>.
ENDCLASS.
CLASS <my amdp class> IMPLEMENTATION.

* AMDP method
METHOD <my amdp method> BY DATABASE PROCEDURE
FOR <db type>
LANGUAGE <db_ language>
OPTIONS <db options>
USING <db_entity>.

"Implementation of the procedure in a DB-specific language
ENDMETHOD.

ENDCLASS.

Accessing Help on AMDP

o O Visit the SAP help portal for detailed help on AMDP . The documentation
o guides you through the concepts of AMDP,
o describes the language syntax,
o informs you about restrictions

SAP - ABAP for SAP HANA Development User Guide
Concepts CUSTOMER 5

https://help.sap.com/http.svc/rc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abenamdp.htm

e Alternatively, you can access the AMDP help by pressing in the context of AMDP method
implementation in the ABAP source editor.
Tool Support

Along the lines of other ABAP for SAP HANA tools, the editing of ABAP Managed Database Procedures is only
supported in the Eclipse-based development environment (ABAP Development Tools)

2.2 AMDP Profiling

AMDP profiling enables you to measure and analyze the performance of ABAP Managed Database Procedures
(AMDP) and the executed SQL statements.
Overview

AMDP Profiler has been fully integrated into the ABAP Profiler of ABAP Development Tools (ADT).

You have the following possibilities to trigger the AMDP Profiler from the source code of an AMDP:

o COI’IteXtmenLIZChOOSGlProfile asl + |ABAP Application (Console)l

e Context menu: Choose|profile as| + [ABAP Unit Test|

e Menu: ChOOSGlRunl + |Profile ABAP Development Object.. |

e from the ABAP Trace Requests view.

i Note
To enable the AMDP Profiler, you have to select the Enable AMDP trace checkbox in the profile
configuration.
The result of the AMDP profiling is contained in the ABAP trace and can be opened from the AMDP trace
optionsABAP Trace view.

The analysis results are provided in the ABAP Managed Database Procedures tab. Here, a tabular view with the
details is displayed.

SAP - ABAP for SAP HANA Development User Guide
6 CUSTOMER Concepts

W -] e i
ABAP Managed Database Procedures

type T et

Trsce Event [Line] Varisble Type Depth Timeline " tran End

v /DMO/ZEL AMDP DEMO 2= GET_FLIGHTS S ———T 1 8 15,068

/DMGIZEL_AMDP_DEMO 2= »GET_FLIGHTS [0] caLL [[15,068
[T EC LA EMIG_ 5= CONVERT L DR

i RESIRT WITH 1 : 1802 man
I'DMU'.‘IEl_ﬁMDP_D[MO_?::-(OM'EH_CUIRt-; ~Lgs) RESIAT 3

SOMOVZCL_AMDP_DEMO_2=>GET_FLIGHTS [8] . M c:
Selected procadure easunng
HANA Runtione i or SQL statement results
WITH ™_5W5_FLI 27 AS [select digtiret
name 8 sirline,
connection,_jid as flight_connection,
price a5 price,
Fournensy_code ot catmendy_cede
from “/DMOVZCL_AWDP_DEMO_2s = DM FLGHT Roove” as f

inmes join */DMOZCL_AMDP_DEMG_2=> D0/ CARFERScowa® a5 ¢

on Lcarner_id = ¢.carner_id) select drtingt

wisline,

Fight_connection,

peics ua oid_sric, SQL statement on
curtency_code 3 od_currency, the database layer
conven_cumency|

TAMOUNT™ == "PRICE",

“SOURCE_ UMNIT® =3 “CURRENCY_CODE",

“TARGET UMIT™ == CAST(NEUR AS NVARCHAR(I)),

“REFEREHCE_DATE" o> _typed_Daydate_(511

“CLIENT® = > NCIDE,

} s new_price,
CASTOY EUR' AS NVARCHARIZH) 83 rivwe_curency
facen *_SYS_FLIGHTS 2" “FUGHTS"

Ovenview | Condensed Hit List | Hit List| Aggregeted Coll Tee | Aggregated Timabne | Call Sequence | Call Timeling | Database Accesses| AEAP Managed Dotabase Procedures]

Example for displaying and analyzing the ABAP trace of an AMDP

The Trace Event column represents the structure of the AMDP execution.

The tree structure does not represent a call hierarchy. Each line can represent, for example, one of the

following:

e Atop level call from ABAP into an AMDP

® A procedure call from AMDP to an AMDP

e The execution of a SQL statement

e A source code position (see SQL Inlining [page 10])

In addition, the SQL statement is displayed which was executed at runtime on the SAP HANA database.

i Note

To get more information about SQLScript basics, which is essential for working with the AMDP Profiler, see

the subsequent documentation.

Features

AMDP Profiler in ADT provides the following features:

® You can measure the time which was spent by SQL statements and procedure calls.

e |tincludes dynamic SQL statements using EXEC.

e |tis fully integrated within ADT by, for example, supporting navigation to AMDP source code.

e |t enables basic filtering, sorting, file exports, and so on.

SAP - ABAP for SAP HANA Development User Guide
Concepts

Enablement

The settings and configuration options of AMDP Profiler are also fully integrated into the ABAP Profiler.

You have the following options to enable AMDP profiling:

e To define if an ABAP trace also comprises an AMDP trace, you need to select the Enable AMDP trace
checkbox in the AMDP trace options section from the Trace Parameters window.

e To predefine AMDP Profiler for each execution by default, open the |+ Window » Preferences » ABAP

Development ¥ Profiling 3 preference page and select the Enable AMDP trace checkbox in the AMDP trace
options section.

Restrictions

AMDP Profiler does not support the following:

® Fine granular information about single SQLScript elements such as 1oops, if,and calculation
e Calculation Engine (CE) functions

e ABAP CDS table functions that are called using ABAP SQL

e Source code information about certain SQL statements

Related Information

ABAP Managed Database Procedures (AMDP) [page 4]
Working with the AMDP Profiler [page 33]
Understanding AMDP Profiling Results [page 8]

2.2.1 Understanding AMDP Profiling Results

The following sections provides basic knowledge about SQLScript which is required to understand the results
of AMDP profiler.

SQLScript Optimizer

SQLScript is designed to provide superior optimization options. Therefore, the SQLScript code written at
design time is adjusted by the SQLScript optimizer before execution at runtime.

SAP - ABAP for SAP HANA Development User Guide
8 CUSTOMER Concepts

These optimizations may contain:

Procedure Flattening

This optimization describes how multiple procedures at design time are combined by SAP HANA into a single
procedure at runtime.

o Example

Written code
procedure pl
call p2(); procedure pl
procedure p2 select...

select...

In the table 1, procedure pl calls procedure p2. The SQLScript optimizer puts the code of procedure p2
inside procedure pl and removes the call during procedure flattening. Therefore, it is possible that during
runtime fewer procedures are called than written in the SQLScript code at design time.

AMDP Profiler shows what actually is executed at runtime. Consequently, it might show fewer procedure
calls than written in the code. However, the content of the flattened procedures (for example, SQL
statements) is still shown in the profiling results.

In the following sample, the procedure convert currency was flattened into procedure get flights by
the SQLScript optimizer. Therefore, the AMDP profiler shows only the call of the get flights procedure
and does not show call of the convert currency procedure.

SAP - ABAP for SAP HANA Development User Guide
Concepts CUSTOMER 9

©[] Z_AMDP_DEMO 2

98= method |get_flights|by database procedure

99 for hdb

100 language sqlscript

181 options read-only

182 using

183 sflight

104 scarr

1685 z_amdp_demo=>convert_currency.
186

187 flights = select distinct

108 carrname as airline,

169 connid as flight_connection,
116 price as price,

111 currency as currency

112 from sflight as f

113 inner join scarr as ¢

114 on f.carrid = c.carrid;

115

116 call "Z_AMDP_DEMO=fCONVERT CURRENCY'|(:flights, result);
117

118 endmethod.

119

1202 method|convert=currency|by database procedure
121 for hdb

122 language sqlscript

123 options read-only.

Global Class Class-relevant Local Types Local Types| Test Classes Macros|

& PR, “ | Z_AMDP_DEMO £ = B
ABAP Managed Database Procedures @FME| B EE =00
| type filter text
Trace Event [Line] Variable Type Depth Timeline
v Z_AMDP_DEMO=>GET_FLIGHTS 0 42,011

| Z_AMDP_DEMO=>GET_FLIGHTS [0] CALL | o

> Z_AMDP_DEMO=>CONVERT_CURRENCY [15] RESULT WITH 1

Sample for procedure flattening

SQL Inlining

It may be that multiple SQL statements at design time are combined into a single SQL statement at runtime for
improving performance.

AMDP Profiler shows the combined SQL statement that was executed at runtime as a second level tree node
and the full statement below. The code positions of the original SQL statements at design time are shown as
third level tree nodes.

«* Example

In the following sample, the two statements al1 flights and some flights are combined into one
statement.

SAP - ABAP for SAP HANA Development User Guide
10 CUSTOMER Concepts

@[]Z_AMDP_DEMO &

s

177 method sgl_inlining by database procedure

178 for hdb

179 language sqglscript

180 options read-only

181 using sflight.

182

183 all_flights = select * from sflight;

184

185 some_flights = select * from :all_flights where carrid = "AA";
186

187 endmethod.

-

Global Class| Class-relevant Local Types| Local Types| Test Classes| Macros

B | Z_AMDP_DEMO 2 = B

ABAP Managed Database Procedures Combined statement at runtime
(2nd level tree node)

type filter text

Trace Event [Line] Variable Type Depth Timeline
v Z_AMDP_DEMO=2>SQL_INLINING 0 2,516
Z_AMDP_DEMO=>SQL_INLINING [0] CALL
| v [Imultiple positions: 2] | WITH
Z_AMDP_DEMO=>5QL_INLINING [8] ALL_FLIGHTS
Z_AMDP_DEMO=>SQL_INLINING [10] SOME_FLIGHTS Ori

<

HANA Runtime Statements:

WITH “_SYS_ALL_FLIGHTS_2" AS (select * from “Z_AMDP_DEMO=>SFLIGHT#coww"), *_SYS_SOME_FLIGHTS_1" AS
(select * from "_SYS_ALL_FLIGHTS_2" "ALL_FLIGHTS" where carrid = "AA’) select

* from "_SYS_SOME_FLIGHTS_1" "SOME_FLIGHTS"

Sample for SQL inlining

Parallel Execution

It may be that SQL statements or procedure calls are executed in parallel threads and in a different order than
written in the source code (if the order is semantically not relevant).

«* Example

In the following sample, the select statements for the values bupas and items are processed in parallel.
Both depend on the value orders. The execution order at runtime differs from the order within the source
code. Note that there is no semantic difference, because dependencies between statements are always
respected.

SAP - ABAP for SAP HANA Development User Guide
Concepts CUSTOMER 1

12

Q)
158=
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169
178
171
172
173
174
175

1 Z_AMDP_DEMO =

method parallel_execution by database procedure
for hdb
language sqlscript
options read-only
using snwd_so snwd_so_i snwd_pd snwd_bpa snwd_ad.

orders = select * from snwd_so
where client = :clnt and so_id in
select low from :order_ids);

.

bupas = select * from snwd_bpa
where client = :clnt and node_key in (
select DISTINCT buyer_guid from :orders);

addresses = select * from snwd_ad
where client = :clnt and node_key in
select address_guid from :bupas);

items = select * from snwd_so_i

where parent_key in (select node_key from :orders)

products = select * from snwd_pd as product
where client = :clnt and node_key in (
select distinct product_guid from :items);

endmethod.

£

Global Class| Class-relevant Local Types| Local Types| Test Classes| Macros|

M “ ' 1| Z_AMDP_DEMO & =0

ABAP Managed Database Procedures eME| HaiEE =00

type filter text

Trace Event [Line] Variable Type Depth Timeline “Start End D

 Z_AMDP_DEMO=>PARALLEL_EXECUTION 0 17,715
Z_AMDP_DEMO=>PARALLEL_EXECUTION [0) CALL o I 0 17S
Z_AMDP_DEMO=>PARALLEL_EXECUTION [14) [ORDERS WITH 1 2,251 5,247
Z_AMDP_DEMO=>PARALLEL_EXECUTION [26] [ITEMS SELECT 1 6958 8723
Z_AMDP_DEMO=>PARALLEL_EXECUTION [18] |BUPAS SELECT 1 6965 10272
Z_AMDP_DEMO=>PARALLEL EXECUTION [22] | ADDRESSES WITH 1 12.214
Z_AMDP_DEMO=>PARALLEL EXECUTION [29] [PRODUCTS __ WITH 1

Overview | Condensed Hit List | Hit List | Aggregated Call Tree | Call Sequence | Call Timeline| Database Accesses | ABAP Managed Database Procedures|

Sample for parallel execution

CUSTOMER

SAP - ABAP for SAP HANA Development User Guide

Concepts

3 Tasks

3.1 Fundamental Tasks and Tools

Overview

SAP HANA is a relational database management system (RDBMS). This platform combines an in-memory
database and its application layer for data-intensive logic.

Your ABAP environment runs on an Application Server ABAP which is the base for all SAP products. Here are all
development objects stored and all development activities and executions performed.

ABAP is SAP's proprietary language to develop business applications within the AS ABAP on the ABAP
platform. ABAP SQL defines the ABAP statements of the SQL subset which can be used as interface to access
the database of an AS ABAP.

So, ABAP for SAP HANA describes the code push-down of data-intensive logic from the ABAP platform layer to
the SAP HANA database layer using ABAP Managed Database Procedures (AMDP).

ADT Tools and Features

The subsequent tools enable you to benefit from the capabilities of SAP HANA by integrating native SAP HANA
objects in the ABAP platform layer.

Related Information

Previewing Results of ABAP Managed Database Procedures (AMDP) [page 14]

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 13

3.1.1 Previewing Results of ABAP Managed Database
Procedures (AMDP)

After you have implemented or consumed an AMDP in an ABAP code, you need to quickly execute and preview
the results of the implemented AMDP.

Context

A preview helps you to:

e ensure that the AMDP provides the expected results
® evaluate the performance of applications while using AMDPs

Since AMDPs are required in day-to-day development activities, integration of the Data Preview tool within
ABAP Development Tools (ADT) is required to facilitate faster development and easier consumption of AMDPs.

i Note

e Data Preview currently supports AMDP methods only with public visibility

e Thisis asimple tool that enables you to quickly see the glue code needed for consuming the AMDP
method, execute AMDP methods, and view the results. Hence, the generated glue code in the case of
AMDP classes with complex constructor signatures (with object references and deep structures) does
not have the complete code for creating objects.

Procedure

In the Project Explorer view, choose an ABAP Project.

Choose the required ABAP package.
Expand the ABAP package | Source Library 3|» Classes .

Expand the required class.
Choose a public AMDP method.

In the method context menu, choose Data Preview.
The AMDP glue code editor and an empty result set appear.

oo e W N

i Note

The table below describes the various features available in the glue code editor:

Feature Description
Check Use this feature to verify the syntax.
Execute Use this feature to run the database procedure and view

the corresponding result set.

SAP - ABAP for SAP HANA Development User Guide
14 CUSTOMER Tasks

Feature Description

Max. Rows Enter a value to display maximum records in the result
set. Data Preview considers only this value while
displaying records even though the result set from the
method execution contains all records.

7. Choose Execute to view the result set.

If required, you can use the glue code editor to provide different input values and preview the
corresponding result sets. For procedures containing multiple exporting or importing parameters, you can
switch between parameters using the dropdown option in the result set section. The dropdown option
appears at the top of the result set.

3.2 Using Troubleshooting Tools

ABAP Debugger

The ABAP Debugger enables you to stop a program during runtime and examine the flow and results of each
statement during execution. Stepping through an ABAP application with the debugger helps you to detect and
correct errors in the source code of a development object.

AMDP Debugger

The AMDP debugger enables you to analyze running ABAP Managed Database Procedures (AMDPs) and CDS
table functions.

ABAP Profiler

The ABAP Profiler tools show you where runtime is being consumed, and where effort for refactoring and
optimization can best be applied. They also let you analyze and understand program flow, which is useful when
you are trying to understand a problem or learn about code you need to analyze or maintain.

AMDP Profiler

The AMDP Profiler enables you to measure and analyze the performance of ABAP Managed Database
Procedures (AMDP) and the executed SQL statements. It has been fully integrated into the ABAP Profiler of
ABAP Development Tools (ADT).

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 15

Related Information

Working with the AMDP Debugger [page 16]
AMDP Profiling [page 6]
Working with the AMDP Profiler [page 33]

3.2.1 Working with the AMDP Debugger

The AMDP Debugger enables you to analyze running ABAP Managed Database Procedures (AMDPs), CDS
table functions, and GraphScript source code.

Prerequisites

e Database:
o AMDPs: SAP HANA DB SPS9, or higher (SPS8 with restricted functionality only)
o CDS Table Functions: SAP HANA DB SPS11, or higher
e ADT Client:
o AMDPs: Client version 2.36 or higher.
o CDS Table Functions: Client version 2.68 or higher.

Overview

The AMDP Debugger is part of the ADT client installation. It allows you to debug the embedded AMDP code,
CDS table functions, and GraphScript within ADT. It is not part of the ABAP Debugger.

The differences are as follows:

e ABAP Debugger is used to debug the execution of ABAP programs running on the AS ABAP.
e AMDP Debugger is used to debug the execution of DB procedures running on SAP HANA DB.

Features

The AMDP Debugger provides you with the following basic functions:

e Activation of the AMDP Debugger
e Setting breakpoints

e Stepping

® Viewing variables

e Viewing table contents

SAP - ABAP for SAP HANA Development User Guide
16 CUSTOMER Tasks

e Deactivation of the AMDP Debugger.

Related Information

ABAP Managed Database Procedures (AMDP) [page 4]

GraphScript Language

Parallel Execution of Procedures in the AMDP Debugger [page 23]
Video: How to debug an ABAP Managed Database Procedure (AMDP) #
Tutorial: How to Debug an ABAP Managed Database Procedure

3.2.11 Activating AMDP Debugger

Prerequisites

e To activate the AMDP Debugger in ABAP Development Tools, you need the standard authorization profile
to debug ABAP programs.

- Remember
There is no need for extra DB user or other authorizations.

e Debugging is enabled (default setting) in the debugger settings. More on this: AMDP Debugger Settings
[page 19]

Procedure

Unlike what you thus far know from the ABAP Debugger, you must first activate the AMDP Debugger in an
ABAP project before using it. This means that you must activate the AMDP Debugger before you can stop the
execution of a database procedure, perform stepping, or inspect variable values.

The debugger activation can be operated in two ways:

e By explicit activation of the AMDP Debugger
e Implicitly by setting breakpoints in AMDP methods.

To activate the AMDP Debugger explicitly, proceed as follows:

1. Openan AMDP class in the relevant ABAP project.

2. Position the cursor within the ruler (left bar) of the source editor at the line that contains the AMDP code
(for example, SQLScript code) you are interested in.

3. Choose Activate AMDP Debugger from the context menu.

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 17

https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/LATEST/en-US/47b72452f48f4ca490fbffcb5ca31f92.html
http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5OEuyl_s5ME
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2014%2F01%2F31%2Ftutorial-how-to-debug-an-abap-managed-database-procedure%2F

21= CLASS CL_DEMO_AB_AMDP IMPLEMENTATION.

22
23= METHOD INCREASE_PRICE BY DATABASE PROCEDURE FOR HDE LANGUAGE SQLSCRIPT
24 USIMG SFLIGHT.
25
CaT = PR N TN i [T S Y P PN P
@ Toggle Breakpoint Ctrl+5hift+B
Toggle Soft Breakpoint Alt+B
Disable Breakpoint Shift+Double Click
Breakpoint Properties... Ctri+Double Click
" Refresh Breakpoint Activation Ctrl+Alt+B

Debug Properties...
— —

| (Activate AMDP Debugger)
Restart AMDP Debugger

Explicit activation
To activate the AMDP Debugger implicitly, follow the link below:
e Setting AMDP Breakpoints [page 20]

Results

A message informs you that the AMDP Debugger has been activated. This activation enables AMDP debugging
within the current ABAP project.

->Tip

To check the (new) activation status, open the Debugview.

%5 Debug 22 | (%! Problems [Templates ® ~ © O

4 [P AMDP Debugger pusm 000, I, EN] |

Database Server

Debugger status is displayed n the Debug view

Related Topics

e Setting AMDP Breakpoints [page 20]
e Status of the AMDP Debugger [page 22]
e Deactivating AMDP Debugger [page 32]

SAP - ABAP for SAP HANA Development User Guide
18 CUSTOMER Tasks

32111 AMDP Debugger Settings

Project-Specific AMDP Settings

To view or change the AMDP Debugger settings, proceed as follows:

1. Open the debugger preference page. (Choose |+ Window ¥ Preferences j» ABAP Development » Debug 3).
2. Choose the link Configure Project Specific Settings... and select the ABAP Project for which you wish to
change (view) the debug settings.

On the Debug dialog, you can choose between two Debug Mode options for the AMDP Debugger:

® Only procedures containing breakpoints
e All called procedures

type filter text Debug o ow o T ow
i i:‘:::g:velopment Configure Workspace Settings...
ABAP Test Cockpit Enable debugger)
Debug
[» Editors Breakpoint activation is effective for
SCL Monitor (_) This project only Enables debugging of any request for the
Builders (® Logon user (ANZEIGER) legon user. This includes embedded SAP

. GUI and ABAP Unit requests as well as

Project Ref

RFDJ;D b e;eer:;es () User external requests like HTTP and RFC.
un/Debug ings

Semnantic Resource \ () Terminal ID
Service Policies

Task Repository » Advanced ings
Task Tags
i Validation FMHDP Debugger

Compile in Debug Mode: | Only procedures containing breakpoints

nrecedures containing
\ All called procedures (may cause timeout!)

Restore Defaults Apply

®

Settings that are relevant for AMDP debugging

What's behind the Debug Mode settings?

During the execution of AMDPs, every single procedure of the call hierarchy runs either in debug mode or in
optimized mode.

e Optimized mode improves performance by using mechanisms like parallelization, inlining, and others.
These optimizations can potentially interfere with debugging. One not quite realistic but simple example
would be a read-only procedure without any exporting parameters. Since such a procedure can never have
any effect, it is not executed at all in optimized mode and therefore breakpoints within this procedure
would not ever be reached.

® Debug mode will prevent such optimizations. Additionally, only procedures in debug mode will recognize
breakpoints that are newly created during an active debug session.

SAP - ABAP for SAP HANA Development User Guide

Tasks CUSTOMER 19

The decision regarding which procedures run in debug mode and which in optimized mode can be influenced
by the Compile in Debug Mode setting:

® Only procedures containing breakpoints: The AMDP Debugger starts quickly, but can have optimization
side-effects. (Default, necessary for very large procedures / call hierarchies).

e All called procedures: No side-effects, but can cause long waiting times for the AMDP Debugger to start up
initially. (Recommended for small procedures / call hierarchies).

See also: Parallel Execution of Procedures in the AMDP Debugger [page 23]

Useful Preferences for AMDP Debugger

It can be very helpful for you if you work with AMDP classes to highlight those parts of your class that contain
embedded AMDP source code. This is not done by default for the source editor so you will have to change the
corresponding preference settings.

To change the syntax coloring for AMDP code, proceed as follows:

1. Open the preferences from the menu bar ([Windows ¥ Preferences 3).

2. Choose|r General » Appearance Colors and Fonts 3.

3. Onthe Colors and Fonts preferences page, choose tree element ABAP > Syntax Coloring > Embedded
Language and assign the color of your choice.

type filter text Colors and Fonts
G I ”
4 heners Colors and Fonts (7 = any character, * = any string):
4 Appearance :
Colors and Fonts type filter text
Label Decorations 4 (g ABAP
Capabilities > (gg Communication Log
Capabilities : (g Profiler
Compare/Patch : (gg Search
Content Types 4 (g Syntax Coloring
- Editors B Comment]
Globalization |0 Embedded Language (background color) |
Keys B Error -
» Metwork Connections B |dentifier

Syntax coloring for embedded AMDP code

3.212 Setting AMDP Breakpoints

Prerequisites

You can set dynamic AMDP breakpoints

SAP - ABAP for SAP HANA Development User Guide
20 CUSTOMER Tasks

® |nthe active version of an AMDP class
® [or any executable statement within the AMDP code.

Procedure

Setting Breakpoints in the Editor ruler Through the Context Menu

1. Position the cursor within the ruler (left bar) of the source editor at the line that contains an executable
AMDP code.

2. Choose Toggle Breakpoint from the context menu.
Setting Breakpoint in the Editor Ruler Through Double-Click.

1. Within the ruler of the source editor, double-click the line that contains the executable statement you are
interested in.

Setting AMDP Breakpoints at Lines of Code

1. Position the cursor on the statement (within the AMDP code) where you want to stop.

2. Then choose the menu option | Run ¥ Toggle Breakpoint. 3

Results

The AMDP breakpoint is assigned to the line of code where you set it. It stays assigned even if the AMDP
debugger has been deactivated in the meantime (for example, after closing the ADT session). However, in that
case the breakpoint will become inactive.

i Note

The status of a breakpoint is indicated by the color.

More on this: Status of the AMDP Debugger [page 22]

i Note

Bear in mind that the creation of a breakpoint can cause recompilation of DB procedures. Depending on
your AMDP Debugger Settings [page 19], only the current and called procedures are affected.
Recompilation only happens if a debug version of the respective procedure is not yet available. While the
recompilation is taking place, the breakpoint changes its state from inactive (gray) to pending (blue).

Further Activities
Toggle a breakpoint again to delete it. You can also disable breakpoints without deleting them.

You can display and manage AMDP breakpoints in the Breakpoints view in the Debug perspective.

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 21

3.2121 Status of the AMDP Debugger

Since the status of the AMDP Debugger is quite important, it is not only visible in the Debug view of ABAP
Development Tools but also indicated in the ABAP source editor by the color of the breakpoints:

AMDP breakpoint color Indicates that ...
Green the AMDP Debugger is active and the AMDP breakpoint is valid and confirmed.
Blue the AMDP Debugger is active but the AMDP breakpoint is still pending. This means, it is vali-

dated but the related DB procedure is not ready yet to be debugged.

Gray the AMDP Debugger is inactive.

3.21.3 Stepping in AMDP Debugger

ABAP Managed Database Procedures (AMDP) are usually nested, which means there are multiple procedures
along a call hierarchy. The call stack and the current position within that stack is shown within the Debug view
in ABAP Development Tools.

If procedures that run in optimized mode (see also: AMDP Debugger Settings [page 19]) are part of the call
stack, these are gray colored, and it is not possible to show the exact code position of the call. Hence, you will
see from which procedure your currently debugged procedure was called, but not the actual line of the call
statement. Normal black colored entries indicate procedures in debug mode.

To proceed after reaching an AMDP breakpoint, the following functions for navigating in the AMDP debugger
are currently available:

Function Effect

— Resume Run to the next AMDP breakpoint or to the end of the program.

~ Step Over Execute the next SQLScript statement. If the next step is a procedure call, run the entire
procedure.

SAP - ABAP for SAP HANA Development User Guide
22 CUSTOMER Tasks

Function Effect

Disconnect Cancel the AMDP Debugger while the debugged application resumes execution, ignoring

any intervening breakpoints.
- Remember

Disconnect is available for the main debugger instance.
Tmi o mEN s SE
Disconnect

%5 Debug 53 [Project Explo
4 ¥ AMDP Debugger [(0, NN, EN]
4 hﬁ} Datakase Serl.rerl
4 i Class Z_AMDP_DEMO (Line 36)
= Procedure AMDP_GET_TOP_RECORDS (Clas

Terminate Cancel the AMDP Debugger and the execution of the debugged application (debuggee).

= Tip

Since the function Step Into (F5) is missing, you can add a breakpoint before entering a new procedure
instead.

i Note

Both the call stack and Step Over (F6) require SAP HANA DB >=SPS9.

3.2.1.3.1 Parallel Execution of Procedures in the AMDP
Debugger

This topic describes an issue concerning the parallel execution of procedures that can occur during debugging
of standard AMDPs as well as during debugging of CDS table functions. In particular, you could take this issue
into account while debugging table functions that are used in unions and joins.

Multithreading Issue When Debugging AMDPs

Depending on your chosen debugger settings and breakpoints, it is possible that only some of your procedures
are executed in debug mode, while others are executed in optimized mode.

More on this: AMDP Debugger Settings [page 19]

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 23

Procedures that run in optimized mode can potentially trigger parallel execution of called procedures. These
parallel executions can then have an impact on debugging.

The following example demonstrates this kind of situation for AMDPs:

e Procedure A calls procedure B multiple times.

e Procedure A runs in optimized mode, while procedure B runs in debug mode. The source code of
procedure B contains a breakpoint.

e The multiple calls of the procedure B are executed in parallel threads at the same time.

The AMDP debugger then stops all parallel thread executions of procedure B, but only the first one is accessed
by the debugger for the variable inspection and user commands.

After choosing Continue ([r8]) or Step-Over ([r6]), the first thread continues with the execution, and one of the
other remaining threads is stopped for debugger access.

A Caution

The main impacts on debugging are as follows:

® |tis not easy to identify which thread is currently being debugged.
e Asthere are no thread IDs, they are not displayed in any particular sequence in the AMDP debugger.

->Tip

For the example above, it can be helpful if you create an additional breakpoint in the procedure A. Then, the
debug mode would be enabled also in the calling procedure.

Multithreading Issue When Debugging Table Functions

The multithreading issue can also occur if a table function is called in parallel by a SQL statement, for example,
due toa JOIN or UNION clause. In that case, it is not possible to solve the problem by creating an another
breakpoint and the described multithreading issue is unavoidable!

3.2.1.4 Inspecting Variables

You can display and check the value of variables at runtime while debugging an AMDP.

Context

In the AMDP debugger, you have the following possibilities to inspect variables:

® |nspecting Scalar Variables and Table Variables [page 25]
® [nspecting Long Variable Values [page 26]
® Inspecting Table Contents [page 27]

SAP - ABAP for SAP HANA Development User Guide
24 CUSTOMER Tasks

® |nspecting Contents of Global Temporary Tables [page 28]

3.21.4.1 Inspecting Scalar Variables and Table Variables

In ABAP Managed Database Procedures (AMDPs) there are scalar and table variables available, but no
structures.

Context

Scalar variables can be inspected in the Variables view of the Debug perspective while table variables can be
inspected in the Data Preview tool.

Additionally there is the option to mouse hover over variables in the source editor.

Procedure

To view the variable values within the SQLScript, proceed as follows:
Double-click the variable in the editor to open it in the Variables view of the Debug perspective.
->Tip

Another way to inspect the variable values is to hover with the mouse cursor over the variable name in the
source editor in the Debug perspective.

(& Z_AMDP_DEMO 22 [[E Z_AMDP_DEMO = B | 0= Variables 12 EE ¥ = 8
» & Z AMDP_DEMO » ® AMDP_GET_TOP_RECORDS Name Value Type
call "7 AMDP_DEMO=>AMDP_GET NUMBER_OF RECI @ L RECORD COUNT 934 INTEGER
& E_TOP_RECORDS TABLE[100] TABLE

if :l_rekord_count »= 188 then
®4 @ L_RECORD_COUNT = 934

else

endhl maouse over
_________ (934) < N
Endmet

67 ENDCLASS] 934

£ >

Inspecting scalar variables (mouse over or Variables view) in the Debug perspective

i Note

The types of the variables are native DB types like VARCHAR. If you want to see input/output parameters
after the type mapping to ABAP data types, you can use the ABAP Debugger.

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 25

Related Information

Inspecting Long Variable Values [page 26]
Inspecting Table Contents [page 27]
Inspecting Contents of Global Temporary Tables [page 28]

3.21.4.2 Inspecting Long Variable Values

As arule, the presentation of long variable values is truncated in the AMDP debugger. This is for performance
reasons, since variables are refreshed during stepping in the debugger, and there is natural limit on the
available space on the Ul.

If needed however, you have the option of inspecting the whole variable value:

To open the details screen with a long variable value, double-click a variable value (scalar or table cell) or
choose the relevant function from the context menu.

i%)= Variables &3 EE ¥ = 8
Marne Value Type
% LARGE_STRING_MVAR ABC45678901234567390123456739012345678901234567... NVAR

@ LARGE_RECORD LE

Offset Length + Word Wrap

Showing 0 to 10.000 of 640.000

ABCA4567390123456720012345678001234567290123456789012345678001 234567 A
29012345673901234567890123456789012345673901 2345673901 23456739012345
6789012345673901.234567390123456739012345673901 2345673901 234567890123
456789012345678%012345673901 2345673901 2345678501234 56789012345673901
2345678501234567890123456729012345678901.2345672901234567290123456789
012345673901234567809012345678901.2345672300123456780012345672001234567
29012345673901234567800123456780012345678901 2345673001 2345678901 2345
6720012345678901234567300123456720012345672001 2345678901 234567290123
456780012345673001234567300123453672001234567800123456729012345678301

Qﬁ‘ﬂ Refresh [{=| Copy [‘EI] Save As... Close

Details screen with a long variable value

By default, the first 10,000 characters (offset = O, length = 10,000) of the value presentation are shown in the
detail screen. You can manually enter any value here for Offset and Length, or use the arrow buttons to page
through the value.

The Word Wrap option adds line breaks in accordance with the size of the popup screen. Without word wrap,
every line shows 1024 characters.

SAP - ABAP for SAP HANA Development User Guide
26 CUSTOMER Tasks

-> Remember
The word wrap option has a significant impact on the performance of the value rendering:

e Without activating the Word Wrap option, it should be easily possible to present 500,000 or more
characters at once (~0.5-1s response time)

e With Word Wrap activated, presenting 10,000 characters at once is fast (up to 1s) but presenting
100,000 characters already takes up to 10 seconds.

3.214.3 Inspecting Table Contents

Procedure

To view the table contents...
1. Double-click the table variable in the source editor to open it in the Variables view In the Debug perspective.

2. Double-click the table entry in Variables view or choose Show in Data Preview from the context menu.

G 7 AMDP_DEMO 33 [[F) Z_ AMDP_DEMO = B - Varables 1 £ & = = B8
» & Z_AMDP_DEMO » @ AMDP_GET_TOP_RECORDS Mame Value Type
a8 call "Z_NDP_DEFD=}NDF‘_GET_M.HEER_O A . % L_RECORD_COUNT 934 INTEGER
g 5. [" -
] if :1 record_count »= 18@ then - Du%reﬂi‘"REEORDS TABLE[T00] TABLE
1 e_top_records = select top 1@@ * f ’ < >
bl alea
< > TABLE[18@]
Global Class | Class-relevant L‘ Local Types| 22
¥ E_TOP_RECORDS &3 == 0

Q| 2 100 rows retrieved - 28 ms @ Add filter = -

s CARRID e CONMID re FLDWATE s PRICE fE CURREMCY nE PLAP ™

0017 20140730 424.06 UsD T47-400

07 20140827 424.06 UsD T47-400 v
>

AA
AA

Inspecting table contents in Data Preview tool that is integrated in the Debug perspective

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 27

3.214.4 Inspecting Contents of Global Temporary Tables

You, as an ABAP developer, use global temporary tables (GTT) to read and write temporary data within a
database LUW. This data can be accessed both through ABAP source code and an ABAP Managed Database
Procedure (AMDP) as well as be displayed in the Data Preview.

Prerequisites

e The AMDP Debugger is activated.

e The AMDP Debugger is located, for example at a breakpoint within an ABAP Managed Database Procedure
(AMDP).

Context

You want to display and check the content of a global temporary table (GTT), for example while debugging an
AMDP.

Procedure

You have the following possibilities to trigger the data preview of GTTs:

Triggering From an Explicit Occurrence within the Source Code

If the explicit name of the relevant GTT is used in the AMDP that is currently opened in the editor, proceed as
follows:

=, Sample Code

. table variable = select * from ZDEMO_ GTT;

1. From the editor, double-click the explicit name of the GTT in the source code.

SAP - ABAP for SAP HANA Development User Guide
28 CUSTOMER Tasks

@1 v] ZCL_DEMO_GTT 12 = g
» G ZCL_DEMO_GTT » = AMDP_METHOD_2

[217 MELNOE @mup MELIVU_£ 0Y UdLdudse PIOLEUUCE 101 (IUD 16HgUdgE SULSCIIPL OPLIUNS reautoniLy 7
;3? using zdemo_gtt

B33 using schema zdemo_schema objects zdemo_gtt.

34

;35 declare myinteger integer := @;

| EL

37 table_wvariable = select * from zdemo 5

138 table_variable_2 = select * from

i BAP.schema(ZDEMO_SCHEMA)"."ZDEMO_GTT";
| EE

Rao myinteger = 1;
#a1
B:: od.
=5 alt
44= method run_demo.
45 data(aasdfasdf) = 5.
46 £ill_gtt().
47 amdp_method_1().
48 clear stt(). o

<> Global Class | Class-relevant Lo, Typﬁ Local Typﬁ' Test Classes. Macros

g

W ABAP Unit [E Feed Reader £ Problems JULA] ZDEMO_GTT ¢t [UIA] ZDEMOLGTT 53

1 { o] ZDEMO_GTT|
) 100 rows retrieved - 24 ms

MAMNDT CARRID CONNID FLOATE SEATSMAX SEATSOCC
000 AA 07 20180503 385 375
000 Iy 0017 20180604 EEH n
000 AA 007 20180706 185 n
000 AA 0017 20180807 1385 361
000 AL 007 20180208 385 ErE
000 A&, 07 20181010 383 mn
H e e e

Triggering the preview from the source code

Triggering From a Fully Qualified Occurrence within the Source Code

If the fully qualified name of the relevant GTT and/or a database schema is used in the AMDP that is currently
opened in the editor, proceed as follows:

=, Sample Code
table variable 2 = select * from

"$SABAP. schema (ZDEﬁO_SCHEMA)" ."ZDEMO_GTT";

-> Recommendation
SAP recommends this approach if you use macros in an AMDP.

1. From the editor, select the full qualified name of the database schema and the name of the GTT inclusive
the opening and closing hyphens.

2. From the context menu, choose Inspect Variable.

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 29

ZCL_DEMO_GTT 52
ZCL_DEMO_GTT » & AMDP_METHOD_2

using zdemo_gtt
using schema zdemo_schema cbjects zdemo_gtt.

declare myinteger integer := 8;

table_variable = select * from zdemo_gtt;
table_variable_2 = select * from TR Ta it FIMRArlSy I e sl L v = N

myinteger = 1;

General Triggering For GTTs

=

Unda
Revert File

Save

Open ABAP Type Hierarchy
Quick Type Hierarchy
Mavigate To

Mavigate to Declaration
Open in Project

Open With

Open Others

Show In

Quick Outline

Ctril=Z

CtieS
il Shifts|
i
Cerle T
F3
ShifteF3
CrlvAltsP 3
>
>
Alte Shifte W >
o
Ctrls X

Fa e

Triggering the context menu for inspecting variables from the full qualified names of the database schema and GTT

If you only know the variable name which is not used in the currently opened editor, proceed as follows:

1. From the Variables view, choose the '4:; Inspect Variable... icon from the toolbar.
The Inspect Variable dialog is opened.

| (x)= Variables £3 | 9 Breakpoints

Marme Value
@ "SAPUIA®"ZDEMO_GTT" Global Tempararny Table [356]
: Et: = Inspect Variable
@ RO Enter Variable Mame:
@ =501
@ usql [ZOEMOGTT] 4= | b
A BAVT

2 I

Global

Triggering the preview from the Variables view
2. Enter the name of the GTT or the full qualified name which might include a macro.

3. To confirm, choose OK.

Results

The Data Preview is opened. From here, you can filter, sort, and so on.

Related Information

Global Temporary Tables

30

CUSTOMER

SAP - ABAP for SAP HANA Development User Guide

Tasks

https://help.sap.com/http.svc/rc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abenddic_database_tables_gtt.htm

3.2.15 Changing Scalar Variables

Scalar variables are used to store an unstructured value in an ABAP-Managed Database Procedure (AMDP).

Prerequisites

You have to explicitly activate the AMDP Debugger.

Context

You want to change the value of a variable while debugging an AMDP method, for example, to test the
subsequent SQLScript code.

i Note

In accordance with the underlying database, you can change variables of the following types:

® NVARCHAR
® STRING

® TINTEGER
® DOUBLE

BLOB and CLOB are currently not supported.

Procedure

1. Inthe source code of an AMDP method, set a new breakpoint or hover over an existing one and activate the
AMDP Debugger.

2. Trigger the AMDP Debugger.
The Debugger perspective is opened.

All variables and their values are displayed in the Variables view.

3. Inthe Variables view, select a variable and choose Change Variable... from the context menu.

The Change Value dialog is opened.

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 31

Change Value for MYSTRING (VARCHAR(5000))

Length 2 | [5et To Null Find: | L 4P [~ Word Wrap

demo_valug]

Text field to
add or adopt
values

Export... .~ Change and Close

Dialog to change the value of scalar variables
4. Inthe text field, enter the new value or choose the Set to Null checkbox.

5. To confirm your changes, choose Change and Close.

Results

The dialog is closed and the value of the variable is adopted in the database.

Related Information

Activating AMDP Debugger [page 17]
Setting AMDP Breakpoints [page 20]

3.21.6 Deactivating AMDP Debugger

Context

Cancel

One technical restriction of AMDP Debugger is that it is quite resource-intensive while it is active. Therefore, it

should be terminated when not needed.

Procedure

® There are several ways to do this:
e By explicit deactivation of the AMDP Debugger.

a. Choose Terminate AMDP Debugger from the context menu in the ruler of the source editor or in the

Debug view.

As aresult of this action, both the debugged application (debuggee) and the AMDP Debugger will be

canceled.

SAP - ABAP for SAP HANA Development User Guide

32 CUSTOMER

Tasks

b. Choose Disconnect.
This action is only available during a running debug session; it cancels the AMDP Debugger, while the
debugged application resumes execution.
e Through timeout, after 10 minutes without user activity.
e [mplicitly by closing the ABAP Development Tools.

3.2.2 Working with the AMDP Profiler

You use AMDP profiling to analyze and measure the runtime behavior of ABAP Managed Database Procedures
(AMDP).

AMDP Profiler has been fully integrated into ABAP Profiler of ABAP Development Tools (ADT).

You have the following possibilities when working with AMDP Profiler:

e Running AMDP Profiler [page 33] to trigger the analysis.
e Opening the AMDP Profiling Result [page 35] to open the analysis from the ABAP Trace view.

Related Information

AMDP Profiling [page 6]

3.2.2.1 Running AMDP Profiler

Context

You need to run the ABAP Profiler to collect the data from the execution of an AMDP,

Procedure

1. To profile the AMDP, choose the relevant execution option from the ABAP source code editor.

You have the following execution options, to trigger AMDP profiling:

© Choose|Run| + [Profile ABAP Development Object...|from the menu bar and select the relevant
execution option.

© Choose|profile as| + |ABAP Application (Console) |from the context menu of the editor.

© Choose|profile as| + [ABAP Unit Test|from the context menu of the editor.

o from the ABAP Trace RequestsCreate an ABAP trace request view.

The Trace Parameters window is then opened.

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 33

i Note

You can also run an ABAP unit test. In this case, set the AMDP trace options in the Profile

Configurations... window.

If there is no entry for the ABAP unit test in the profile configurations, run the ABAP unit test profiling

once to create it.

2. Select the Enable AMDP trace checkbox in the AMDP trace options section.

l-. Trace Parameters

Trace Parameters

Modify trace parameters

= Perform aggregated measurement?
(® Mo, | need the Call Sequence (large file size)
() Yes, | need the Aggregated Call Tree (medium file size)

() Yes, Hit List is sufficient (small file size)

» Which ABAP statements should be traced?
(® Procedural units, SQL
() Procedural units, SQL, internal tables
() Only procedural units
() Custom statements:
= Details

+ When should the trace start?
(®) Immediately
() Explicitly switch on and off (e.g. within Debugger)

~ Advanced parameters
Maximum execution time: minutes
e

[] Trace RFC and update requests
[] Enable 5QL trace

Maximum file size:

Procedural units
SOL database access
[Access to internal tables

+ AMDPF trace options
[J Enable AMDP trace

Procedure filten

[]Dynpro events
[] Other ABAP events

[1System and kernel events

Configure defaults...

Restore Defaults

@

Cancel

Trace Parameter window for defining the AMDP trace options

3. [Optional:] To run AMDP profiling only for specific procedures, set a procedure filter by entering the name
of the relevant procedure(s) in the Procedure filter input field.

Use a colon as separator to enter multiple procedures.

4. Choose Finish.

34 CUSTOMER

SAP - ABAP for SAP HANA Development User Guide

Tasks

Results

The execution and profiling of the AMDP is started. When the execution is finished, the ABAP trace is created
and is then ready to be analyzed in the ABAP Traces view.

3.2.2.2 Opening the AMDP Profiling Result

Context

You want to get detailed information, for example, about the duration of the execution of a specific procedure.

Procedure

1. Todisplay the analysis result of the AMDP profiling, choose the relevant ABAP project and double-click the
relevant trace in the ABAP Traces view
The Overview is opened.

2. Choose the ABAP Managed Database Procedures tab from below.
The ABAP Managed Database Procedures overview is opened and displays the result of the AMDP profiling
analysis in a table.

3. To get more details about the statement which has been executed at ABAP runtime, view the table and
expand the relevant procedure nodes.

4. [Optional:] To navigate to the relevant position within your ABAP source code, double-click the
corresponding statement.

The development object is opened and the cursor is positioned at the relevant position.

SAP - ABAP for SAP HANA Development User Guide
Tasks CUSTOMER 35

4 What's New in ABAP for SAP HANA
Development

SAP ABAP for SAP HANA is an integral part of the ABAP Development Tools (ADT). The relevant ABAP back
ends support certain ADT functionalities.

& ABAP Environment

The following list gives you an overview of the released ADT client versions:

e \ersion 3.6 [page 36]
® \ersion 3.4 [page 37]

4.1 O Version 3.6

Here is an overview of the most significant changes in the context of ABAP for SAP HANA building tools that
relate to the following:

e (Client: ABAP Development Tools (ADT) 3.6
e Back end version: & SAP Cloud Platform ABAP Environment 1911.

The following features that are highlighted with a '*" are client-specific and are therefore available for all
supported ABAP systems.

& Using Troubleshooting Tools

Changing Scalar Variables While Debugging an AMDP

You can now change the value of a variable while debugging an AMDP method, for example, to test the
subsequent SQLScript code.

You can trigger this function from the Change Value dialog in the Variables view while debugging an AMDP. To
open this dialog, select the relevant variable and choose Change Variable... from the context menu.

SAP - ABAP for SAP HANA Development User Guide
36 CUSTOMER What's New in ABAP for SAP HANA Development

Change Value for MYSTRING (VARCHAR(S000)) n

Length 2 | []Set To Mull Find: | L 1 [] Word Wrap

demo_valuel

Text field to
add or adopt
values

Export... f Change and Claose Cancel

Dialog to change the value of scalar variables

For more information, see Changing Scalar Variables [page 31]

4.2 \Version 34

Here is an overview of the most significant changes in the context of ABAP for SAP HANA building tools that
relate to the following:

e (Client: ABAP Development Tools (ADT) 3.4
e Back end version: & SAP Cloud Platform ABAP Environment 1908.

The following features that are highlighted with a '*' are client-specific and are therefore available for all
supported ABAP systems.

Using Troubleshooting Tools

Debugging GraphScript
GraphScript is a high-level, domain-specific programming language for development on SAP HANA.
You can now use AMDP Debugger for ABAP source code that contains GraphScript code.

This enables you, for example to set breakpoints for GraphScript statements and step iteratively through your
ABAP application.

1 For more information, see

e Working with the AMDP Debugger [page 16]

SAP - ABAP for SAP HANA Development User Guide
What's New in ABAP for SAP HANA Development CUSTOMER 37

4.3 1% Version 3.0

Here is an overview of the most significant changes in the context of ABAP for SAP HANA building tools that
relate to the following:

e C(Client: ABAP Development Tools (ADT) 3.0
e Back end version: © SAP Cloud Platform ABAP Environment 1902.

The following features that are highlighted with a *' are client-specific and are therefore available for all
supported ABAP systems.

& Using Troubleshooting Tools

AMDP Profiling

You can now use AMDP profiling to analyze the runtime behavior of an ABAP Managed Database Procedure
(AMDP). AMDP Profiler has been fully integrated into the ABAP Profiler.

You have the following options, to trigger AMDP profiling:

® Choose|profile as| + [ABAP Application (Console) |from the context menu of the editor.

® Choose|profile as| + [ABAP Unit Test|from the context menu of the editor.

e from the ABAP Trace Requests view.

The analysis results are generated for an ABAP trace and displayed in the ABAP Managed Database Procedures
tab.

o] e B
ABAP Managed Database Procedures FER®
typr fies text
Tesce Event [Ling) Vaniabls Type Depth Timeeling " an Emd Duwwstion Execution Time Compale Time
w [OMO/ZCL AMDP DEMO 2= > GET_FLIGHTS —— 1] o 15,068 19,088
/DMCZCL AMER_DEMIE_ 2= »GET_FLIGHTS (0] CALL [o 15,068 19,068 Bm E
~ [OAGTECL_ERE DERAD = CORVERT CORRENCY [13] | RESIAT WITH 1 1,508 17231 15429 LERAE] 1]
/DMADVICL_AMDP DEMO 2= ONVERT_CURRE., “U115] REFIAT
FDOMOVICL_AMDP DEMO 2==GET_FLIGHTS [£] : M o
Selected procedure easunng
or SQL statement results

HANA Runténe Sia ents

WITH ™_§v5_FLIGHTS 1" A5 {select digtinet

name a5 airline,

connection_jd as flight_connection,

price as price,

Fawrnendy_code ot caimendy_code

from “/OMOVZCL_AMIDE_DEMO_2a » [DMOFLIGHT #coww" asf

innees join */IMAC/ZCL_AMDP_DEMO 2= > (DD CARRERBcova” as ¢
o6 Learnar_d = Coirnar_nd) felact datinet

sinline,

:;fﬁit:;’::::‘ SOL statement on
curtency_code 01 odd_currency, the database layer

conet_oumencyl

“AMOUNT™ = > "PRICE",

“SOURCE UNIT = “CURRENCY CODE,
“TARGET_UMIT™ =» CAST{NEUR AS MVARCHARIZ),
“REFEREHCE_DATE" = _typed_Daydate_{51],
“CLIENT™ => 1§00
“ERROR_HANDUING
"SCHEMA™ == NSARA
} a5 new_price,
CASTOEUR AS NVABCHARE]) a3 row,_curmency
feorn *_SYS_FLIGHTS 2" “FLIGHTS"

T_TO_NULL,

Overvien Condensed Hit List | Hit List | Aggregeted Call Tree | Aguregated Timelne Call Sequence | Call Tumehne | Database Aceesses| ABAP Managed Database Procedures)

Example for displaying and analyzing the ABAP trace of an AMDP

For more information, see

SAP - ABAP for SAP HANA Development User Guide
38 CUSTOMER What's New in ABAP for SAP HANA Development

e AMDP Profiling [page 6]
e Working with the AMDP Profiler [page 33]

Debugging AMDPs
You can now debug AMDP code and CDS table functions within the ABAP Development Tools.

For more information, see Working with the AMDP Debugger [page 16]

Displaying the Content of Global Temporary Tables While AMDP Debugging

You can now display the content of global temporary tables (GTTs) at runtime in the Data Preview while
debugging AMDPs.

For more information, see Inspecting Contents of Global Temporary Tables [page 28]

Profiling ABAP Applications (Console)

You can now profile ABAP applications which are executed in the console. To do this, choose +
|ABAP Application (Console) |from the context menu in the ABAP source code editor.

For more information, see

SAP - ABAP for SAP HANA Development User Guide
What's New in ABAP for SAP HANA Development CUSTOMER 39

Important Disclaimers and Legal Information

Hyperlinks

Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

o Links with the icon o : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

e The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
e SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

e Links with the icon &: You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms

Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features

Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.

The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code

Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language

We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

SAP - ABAP for SAP HANA Development User Guide
40 CUSTOMER Important Disclaimers and Legal Information

SAP - ABAP for SAP HANA Development User Guide
Important Disclaimers and Legal Information CUSTOMER 41

/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	SAP - ABAP for SAP HANA Development User Guide
	Content
	1 About the ABAP for SAP HANA Development User Guide
	2 Concepts
	2.1 Database Procedures
	2.1.1 ABAP Managed Database Procedures (AMDP)

	2.2 AMDP Profiling
	2.2.1 Understanding AMDP Profiling Results

	3 Tasks
	3.1 Fundamental Tasks and Tools
	3.1.1 Previewing Results of ABAP Managed Database Procedures (AMDP)

	3.2 Using Troubleshooting Tools
	3.2.1 Working with the AMDP Debugger
	3.2.1.1 Activating AMDP Debugger
	3.2.1.1.1 AMDP Debugger Settings

	3.2.1.2 Setting AMDP Breakpoints
	3.2.1.2.1 Status of the AMDP Debugger

	3.2.1.3 Stepping in AMDP Debugger
	3.2.1.3.1 Parallel Execution of Procedures in the AMDP Debugger

	3.2.1.4 Inspecting Variables
	3.2.1.4.1 Inspecting Scalar Variables and Table Variables
	3.2.1.4.2 Inspecting Long Variable Values
	3.2.1.4.3 Inspecting Table Contents
	3.2.1.4.4 Inspecting Contents of Global Temporary Tables

	3.2.1.5 Changing Scalar Variables
	3.2.1.6 Deactivating AMDP Debugger

	3.2.2 Working with the AMDP Profiler
	3.2.2.1 Running AMDP Profiler
	3.2.2.2 Opening the AMDP Profiling Result

	4 What's New in ABAP for SAP HANA Development
	4.1 Version 3.6
	4.2 Version 3.4
	4.3 Version 3.0

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

